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If the constituent particles of fluid phases interact via long-ranged van der Waals forces, the effective
Hamiltonian for interfaces between such fluid phases contains—in lateral Fourier space—nonanalytic terms
�q4 ln q. Similar nonanalytic terms characterize the effective Hamiltonian for two interacting interfaces which
can emerge between the three possible coexisting fluid phases in binary liquid mixtures. This is in contrast with
the structure of the phenomenological Helfrich Hamiltonian for membranes, which does not contain such
nonanalytic terms. We show that under favorable conditions for the bulk densities characterizing a binary liquid
mixture and for the long-ranged interparticle interactions, the corresponding effective Hamiltonian for a model
fluid membrane does not exhibit such nonanalytic contributions. We discuss the properties of the resulting
effective Hamiltonian, with a particular emphasis on the influence of the long range of the interactions on the
coefficient of the bending rigidity.
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I. INTRODUCTION

In order to be able to describe nonplanar configurations of
interfaces and membranes, the derivation and use of corre-
sponding effective Hamiltonians has been studied intensively
�1–3�. Depending on the environment and their internal com-
position, interfaces and membranes can display rather com-
plex behaviors �4�. A particular class of such systems is
formed by the ubiquitous fluid-fluid interfaces and fluid
membranes. In the case of interfaces, the effective Hamil-
tonian takes on a capillary-wave-like structure �5� while
membranes are usually described in terms of the so-called
Helfrich Hamiltonian �6�.

On the phenomenological level, the effective Hamiltonian
contains two types of contributions: the first is related to the
possible change of the interface or membrane area and is
controlled by the coefficient �0 of the surface tension, while
the second contribution is proportional to the square of the
local mean curvature of the interface or membrane and is
controlled by the coefficient � of the bending rigidity. In the
following we consider fluctuating interfaces or membranes
which are planar on the average and do not change their
topology; thus contributions due to the Gaussian curvature
do not matter. In lateral Fourier space, the contribution from

the q mode, f̃�q�, of a local height configuration to the ef-

fective Hamiltonian is proportional to � f̃�q��2�qa�2��q�,
where a is a microscopic length scale proportional to the
particle diameter and ��q→0�=�0+��qa�2.

Here we focus on the ensuing structure of the effective
Hamiltonian for systems in which the interparticle interac-
tions are of the long-ranged van der Waals type. This issue
becomes acute if one tries to justify and to derive the phe-
nomenological capillary-wave Hamiltonian from a micro-
scopic theory such as, e.g., density functional theory �5�. In
such approaches it turns out that for interfaces between fluid
phases in systems governed by long-ranged forces the effec-

tive surface tension ��q� exhibits the form ��q→0�=�0
+�1�qa�2 ln�qa�+��qa�2, and thus contains a leading
nonanalytic term �1�qa�2 ln�qa� with �1�0 that is not cap-
tured by phenomenological approaches. This logarithmic sin-
gularity in Fourier space can be traced back to the divergence
of the third and higher moments of the interparticle interac-
tion potentials decaying as a function of the distance �r−6.
For fluid interfaces the presence of such a nonanalytic con-
tribution has been established theoretically �7–10�. This al-
gebraic decay of the long-ranged van der Waals interactions
leaves a trace also in the bulk structure such that the Fourier
transform of the direct correlation function contains a
nonanalytic term �q3 �11–13�. For the interfaces considered
here, the aformentioned logarithmic singularity in the inter-
facial structures implies that for small q�0 one has ��q�
��0. This decrease of ��q� for small q, which is consistent
with the term �1�qa�2 ln�qa� in ��q�, has been confirmed by
several independent x-ray scattering experiments carried out
for various fluids �14�, as well as by some simulations �15�
but not all �16�. On the other hand, such nonanalytic terms
are absent in the effective Helfrich Hamiltonian for mem-
branes which, however, successfully describes various prop-
erties of fluid membranes. This is puzzling because the par-
ticles making up membranes invariably also exhibit long-
ranged van der Waals interactions, which in turn should lead
to nonanalytical bending contributions.

Our objective is to construct a simple model of a fluid
membrane based on the extension of a model of two inter-
acting fluid-fluid interfaces. We want to check under which
conditions, if any, the absence of nonanalytic terms of the
type �1�qa�2 ln�qa� in the effective Hamiltonian for a mem-
brane is possible, and what kind of influence on the remain-
ing terms these conditions have. In the following section we
recall the relevant results concerning the structure of the
capillary-wave Hamiltonian. In Sec. III we discuss a simple
model of fluid membranes in a system with long-ranged
forces which is based on a model of two interacting fluid-
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fluid interfaces in a binary liquid mixture. We establish the
conditions under which the effective Hamiltonian for the
fluid membrane is free from nonanalyticities present in the
corresponding capillary-wave Hamiltonian for the interface
and is thus compatible with the structure of the Helfrich
Hamiltonian. In Sec. IV we compare our predictions for the
resulting effective Hamiltonian with those discussed in the
literature.

II. EFFECTIVE HAMILTONIAN FOR A FLUID-FLUID
INTERFACE

In this section we recall the basic facts pertinent to the
structure of the capillary-wave Hamiltonian Hcw�f� for a
fluid-fluid interface. Its local height relative to the reference
plane z=0 is described by the function z= f�R�, where R
= �x ,y� denotes the lateral coordinates. Various aspects of
this structure have been discussed in the literature. In particu-
lar, the issue of a local versus a nonlocal structure of Hcw�f�
has been extensively analyzed for the cases of short-ranged
�exponentially� and long-ranged �algebraically� decaying in-
teractions �7–10,17�. A suitable framework for analyzing
such issues is density functional theory for nonuniform flu-
ids. This analysis is particularly straightforward if the non-
uniform one-component fluid density ��R ,z� associated with
an interface configuration f�R� is approximated within the
so-called sharp-kink approximation by a piecewise constant
function �shk�R ,z�=���(f�R�−z)+�	�(z− f�R�), where �	

and �� denote the bulk densities of the coexisting fluid
phases 	 and �, and ��z� denotes the Heaviside function. If,
moreover, the effective Hamiltonian is truncated to be bilin-
ear in f , it can be written as �7–9� �in the Appendix we
summarize the corresponding basic steps of the analysis�

Hcw�f� =
1

2
� d2q

�2
�2 � f̃�q��2q2��q� , �1�

where

f̃�q� =� d2R f�R�exp�− iq · R� . �2�

The wave-vector-dependent surface tension ��q� in Eq. �1� is
given by

��q� = q−2�w̃�q� − w̃�0����	 − ���2, �3�

where w̃�q� denotes the Fourier transform of the long-ranged
part of the spherically symmetric interparticle interaction po-
tential w(r= ��R ,z��) taken with respect to the lateral coordi-
nates for z=0:

w̃�q� =� d2R w„��R,z = 0��…exp�− iq · R� . �4�

It has turned out to be suitable to adopt for the long-ranged
part of the van der Waals pair potential w�R ,z� the form

w„��R,z��… = −
A

�R2 + z2 + a2�3 , �5�

where a corresponds to the hard core radius of the fluid
particles and A�0 characterizes the strength of the attractive

interparticle interaction. For q̄=qa�1 the ensuing ��q� has
the following nonanalytic form:

��q� = �0 + �1q̄2 ln�q̄� + �2q̄2 + O�q̄4� , �6�

where �0= �A
 /8a2���	−���2�0, �1= 1
4�0�0, �2= 1

4�0C0
�0, C0=CE−3 /4−ln 2=−0.866, and CE denotes Euler’s
constant.

A more realistic approach to determine ��q� �9� takes into
account the influence of local interfacial curvatures on the
actual smooth intrinsic density profile. The effective Hamil-
tonians for interfaces both in one-component �9� and in bi-
nary liquid mixtures �10� have been analyzed along these
lines. For long-ranged van der Waals interactions in each
case the presence of nonanalytic terms in ��q� �Eq. �1�� has
been established.

III. A MODEL OF A FLUID MEMBRANE

For the comparison between effective Hamiltonians for
fluid-fluid interfaces and fluid membranes it is particularly
suitable to consider binary liquid mixtures. Upon special
choices of the thermodynamic conditions these systems al-
low for the coexistence of three fluid phases denoted as 	, �,
and �. In the presence of appropriately chosen boundary con-
ditions or external ordering fields one can consider a situa-
tion in which a layer of—say—phase � with mean thickness
� separates the phases 	 and � �18�. In such a system there
are two fluid-fluid interfaces, the positions of which are de-
noted by f	��R� and �+ f���R�. They separate the phases
	, � and �,�, respectively �see Fig. 1�. We note that, al-
though the system is characterized by six number densities
�i, with i=1,2, and =	 ,� ,�, where �i denotes the num-
ber density of the ith component in phase , three-phase
coexistence allows for only one independent thermodynamic
variable such as temperature; on the corresponding triple line
the chemical potentials �1�T� and �2�T� of the two species
are fixed. In addition, there are three interparticle interactions
present in the system: two among the two species and
one between the different species. They are assumed to be
spherically symmetric and are denoted by wij�r�=wji�r�
=wij(��R ,z��) with i , j=1,2.

For such a system containing two interfaces, the capillary-
wave Hamiltonian Hcw��f	� , f��� ,�� is a functional of the
two interfacial positions f	��R� and f���R� and a function of
the distance �. Application of the sharp-kink approximation
to the density functional for binary liquid mixtures described,
e.g., in Refs. �8,10� yields within the bilinear approximation,

FIG. 1. The system under consideration consists of two fluid-
fluid interfaces f	��R� and �+ f���R� separating the phases 	, �
and �, �, respectively, and fluctuating around their mean positions
z=0 and z=�, respectively.
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which retains nonlocality, the following form �see the Ap-
pendix�:

Hcw��f	�, f���,�� =
1

2
� d2q

�2
�2 �2 f̃	��q� f̃���− q�w̃	�,���q,��

+ � f̃	��q��2�q2�	��q� − w̃	�,���0,���

+ � f̃���q��2�q2����q� − w̃	�,���0,���	 ,

�7�

where

w̃�,���q,z� = 

i,j=1

2

��i − �i���� j� − � j��

�� d2R exp�− iq · R�wij�R,z� �8�

and �8,10�

���q� = q−2�w̃�,��q,z = 0� − w̃�,��q = 0,z = 0�� . �9�

The above results can serve as a starting point to construct a
simple model of a fluid membrane. To this end we take the
two interface configurations to be in phase, i.e., f	��R�
= f���R�. This renders a model fluid membrane consisting of
phase � embedded on one side by phase 	 and on the other
side by phase �. The thickness � of the membrane is uniform
and its upper and lower boundaries have the same shape
described by f�R�= f	��R�= f���R�. In this case and within
the bilinear approximation the capillary-wave Hamiltonian
reduces to

H��f�,�� =
1

2
� d2q

�2
�2 � f̃�q��2��q�q2 �10�

with

q2��q� = 

i,j=1

2

����i	 − �i���� j	 − � j�� + ��i� − �i���� j� − � j���

��w̃ij�q,0� − w̃ij�0,0�� + 2��i	 − �i���� j� − � j��

��w̃ij�q,�� − w̃ij�0,���	 . �11�

With the choice

wij„��R,z��… = −
Aij

�R2 + z2 + aij
2 �3 �12�

for the long-ranged interparticle potentials, one has

w̃ij�q,�� − w̃ij�0,��

=



8
Aij� q2

aij
2 + �2 +

q4

4
�ln�q�aij

2 + �2� + C0� . �13�

For reasons of simplicity in the following we assume aij =a,
i , j=1,2. This choice leads to the following expression for
��q�:

��q� = �0 + �1q̄2 ln q̄ + �2q̄2 + O�q̄4� , �14�

where, with �̄=� /a,

�0��� =



8a2 

i,j=1

2

Aij����i	 − �i���� j	 − � j�� + ��i� − �i��

��� j� − � j��� +
2

1 + �̄2
��i	 − �i���� j� − � j�� ,

�15�

�1 =



32a2 

i,j=1

2

Aij��i	 − �i���� j	 − � j�� , �16�

and

�2��� =



32a2 

i,j=1

2

Aij�ln�1 + �̄2���i	 − �i���� j� − � j��

+ C0��i	 − �i���� j	 − � j��� . �17�

As expected, similar to the case of a single interface �Eq.
�6��, the effective Hamiltonian for the model fluid membrane
contains a nonanalytic contribution �1q̄4 ln q̄. In this sense
the structure of the effective Hamiltonian given by Eqs. �10�
and �14�–�17� is not compatible with the phenomenological
Helfrich Hamiltonian ansatz which for small membrane un-
dulations can be expressed in a form as in Eq. �14� but with
�1=0.

Our purpose is thus to find conditions under which the
coefficient �1 of the nonanalytic contribution in Eq. �14� van-
ishes. There are two particularly simple choices of the num-
ber densities �i and the amplitudes Aij of the interaction
potentials which satisfy this requirement. The first choice �I�
puts constraints on the densities of the phases 	 and � and
stipulates

�i	 = �i�, i = 1,2 �I� . �18�

This condition requires that the two phases on both sides of
the membrane are identical. The second choice �II� puts con-
straints both on the interaction amplitudes and on the densi-
ties. First, it requires that

A12 = �A11A22 �IIa� , �19�

which leads to

�1 =



32a2 ��A11��1	 − �1�� + �A22��2	 − �2���2. �20�

The additional requirement

�A11��1	 − �1�� = − �A22��2	 − �2�� �IIb� �21�

implies �1=0. It is straightforward to show that the above
condition I �Eq. �18�� leads to

��I��q� =



4a2 ��A11��1	 − �1�� + �A22��2	 − �2���2��q̄, �̄� ,

�22�

where
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��q̄, �̄� =
�̄2

1 + �̄2
−

q̄2

8
ln�1 + �̄2� . �23�

Interestingly, if the conditions IIa �Eq. �19�� and IIb �Eq.
�21�� are imposed, the corresponding effective surface ten-
sion ��II��q� has exactly the same form as for the first condi-
tion, i.e., ��II��q�=��I��q�. The fact that the requirements II,
which put constraints on both the densities and the interac-
tion amplitudes, lead to the same result as the requirement I,
which identifies the phases 	 and � but does not involve the
interaction amplitudes Aij, can be understood as follows. We
consider a typical contribution to the free energy density
functional which describes the interaction between particles
located in a region V	 of the binary liquid mixture with a
specific particle of type k, k=1,2, located at r� somewhere in
the system. This term is proportional to

�
V	

d3r

i

wik�r − r���i	 � 

i

Aik�i	

= A1k�1	 + A2k�2	

= �Akk��A11�1	 + �A22�2	�

= �Akk��A11�1� + �A22�2��

= A1k�1� + A2k�2�, �24�

where the conditions in Eqs. �19� and �21� have been used.
One concludes that this contribution to the free energy func-
tional has the same form as if the region V	 were filled with
particles with densities �i� instead of �i	. But this is exactly
the requirement in Eq. �18� corresponding to choice I which
identifies the phases 	 and �.

In the next section we discuss the properties of the result-
ing effective Hamiltonian.

IV. DISCUSSION

In the previous section we showed that for special choices
for the densities or the interparticle interactions in binary
liquid mixtures there are no nonanalytic contributions to ��q�
in the limit of small q �up to and including O�q2��. This
choice eliminates the leading nonanalytic contribution for
any membrane thickness �, because �1 does not depend on �
�see Eq. �16��. It turns out that, independent of whether con-
straints of type I in Eq. �18� or of type II in Eqs. �19� and
�21� are imposed, the resulting effective Hamiltonian for the
model fluid membrane takes the form given by Eqs. �10� and
�22�. The function ��I��q� in Eq. �22� is determined by the
bulk number densities �i, i=1,2, =	 ,�, the interaction
strengths A11,A22, the particle size a, and the membrane
thickness �. The function ��I��q� factorizes into a product of
two functions. The first factor depends on the densities and
interaction strengths only and is non-negative. The second

factor depends on q̄ and parametrically on �̄ only; the param-
eter a sets the scale for the variables q and �. This second

factor, which we denoted as ��q̄ , �̄�, is particularly interest-
ing because—in contrast to the first factor—it can change

sign depending on the values of q̄ and �̄. This possibility of

��I��q� changing sign appears because the coefficient �2 in
Eq. �14� is inherently negative, i.e., the contribution from the
long-ranged forces to the coefficient of the bending rigidity
is negative. Note that within the sharp-kink approximation,
which takes only the influence of the long-ranged forces into
account, �2 is also negative �see Eq. �6� and the expressions
following it�. This conclusion checks qualitatively with a re-
cent analysis by Dean and Horgan �19�, who have expressed
the coefficient of the bending rigidity in terms of the mem-
brane thickness and the dielectric constants of the membrane
��� and of the surrounding medium ����:

�2
DH��� = −

3kBT

128

� � − ��

� + ��
2

ln�1 + �̄2� . �25�

Dean and Horgan �19� did not discuss the issue of the pres-
ence of nonanalytic terms in the effective Hamiltonian. How-
ever, our result and those in �19� agree concerning the func-
tional form of the dependence of the coefficient �2��� on the
membrane thickness �. Within both approaches the coeffi-
cient of the bending rigidity depends logarithmically on the

membrane thickness, i.e., �2� ln�1+ �̄2�. Of course realistic
membrane models yield additional contributions to the bend-
ing rigidity stemming from other types of interactions
present in the system. In our approach only the long-ranged
contributions to the bending rigidity are considered. In this
latter case, the negative coefficient �2 of the bending rigidity
in the presence of the positive coefficient �0 of the surface
tension leads to an instability at small wavelengths of the
membrane undulations. According to Eq. �23� this instability
occurs for

q̄2 �
8�̄2

�1 + �̄2�ln�1 + �̄2�
�unstable; I, II� . �26�

On the other hand the wave vectors must be smaller than the
physically allowed maximal one q̄max�1. This implies that

the values of �̄ for which the instability can occur satisfy the
condition

�̄ � �̄0 = exp� 4

q̄max
2  �unstable; I, II� . �27�

For q̄max=1 /2 one has �̄0=9�106. If, as an example, one
takes the parameter a equal to the noble gas atomic size, say

a=0.1 nm, then the above estimate gives �0= �̄0a=0.9 mm.

This condition states that for membrane thicknesses 0� �̄

� �̄0 the negative bending rigidity coefficient does not give
rise to instabilities for membrane undulations with wave vec-
tors within the physically accessible range q̄� q̄max.

Finally, we mention that the vanishing of the coefficient
�1 can also occur in binary liquid mixtures in which the
interactions w11 and w22 are repulsive, i.e., A11,A22�0,
while the interactions w12 are attractive, i.e., A12�0. �It is
conceivable that such a situation may arise in multicompo-
nent complex fluids with effective interactions between two
dominating species upon integrating out the degrees of free-
dom of the smaller species. This can occur if the two species
are oppositely charged.� This is a different situation from the
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one considered above in which all long-ranged interactions
were assumed to be attractive, i.e., A11,A22,A12�0. In this
present case the conditions IIa and IIb are replaced by

A12 = ��− A11��− A22� �IIIa� �28�

so that

�1 = −



32a2 ��− A11��1	 − �1�� − �− A22��2	 − �2���2,

�29�

and by

�− A11��1	 − �1�� = �− A22��2	 − �2�� �IIIb� , �30�

respectively. It is straightforward to see that in this case the
effective surface tension denoted as ��III��q� is given by

��III��q� = −



4a2 ��− A11��1	 − �1�� − �− A22��2	

− �2���2��q̄, �̄� . �31�

Accordingly, the model fluid membrane is unstable with re-
spect to long-wavelength undulations:

q̄2 �
8�̄2

�1 + �̄2�ln�1 + �̄2�
�unstable; III� . �32�

This implies that for undulations with given q̄ values only
membranes with thicknesses

�̄ � exp� 4

q̄2 �unstable; III� �33�

are unstable.
To summarize, we have shown that it is possible to choose

conditions under which the leading nonanalytic contribution
to the effective Hamiltonian of a fluid membrane in the pres-
ence of long-ranged forces vanishes. One of them amounts to
the requirement that the embedding phases on both sides of a
fluid membrane are identical. For example, if our conclu-
sions are applied to the case of lipid membranes surrounded
by water on both sides, the nonanalytic terms in the effective
Hamiltonian should be absent. We have also checked that the
contribution from long-ranged forces to the coefficient of the
bending rigidity is negative, and we have discussed the im-
plications for the stability of membranes with respect to un-
dulations.
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APPENDIX: THE EFFECTIVE CAPILLARY-WAVE
HAMILTONIAN FOR MULTICOMPONENT SYSTEMS

One way to derive the capillary-wave Hamiltonian for a
two-component fluid mixture is to start from the mean-field-
like grand canonical density functional �5,8�:

� =� d3r fhs„�1�r�,�2�r�,T…

+
1

2 

i,j=1

2 � d3r� d3r�wij��r − r����i�r�� j�r��

− 

i=1

2

�i� d3r �i�r� , �A1�

where fhs��1�r� ,�2�r� ,T� is the free energy density of the
hard sphere reference fluid evaluated within the local density
approximation; �i and �i�r� denote the chemical potential
and the number density of the ith species, respectively. The
interparticle interaction wij�r�=wji�r� is taken to be spheri-
cally symmetric. One encloses the mixture in a finite �Lx
�Ly �Lz� box �Fig. 1� and evaluates the functional � �Eq.
�A1�� for fixed positions of the interfaces f	� and �+ f��

separating the coexisting phases 	, �, and � in the inhomo-
geneous system, using e.g., the sharp-kink approximation of
steplike varying density profiles. After subtracting from �
the appropriate bulk contributions, the contributions stem-
ming from two reference planar interfaces, as well as both
surface and line contributions induced by the interaction of
the fluid with the enclosing walls, in the limit of infinite
system size one is left with the capillary-wave Hamiltonian
corresponding to two collective interfacial degrees of free-
dom:

Hcw��f	�, f���,�� = H0�f	�� + H0�f��� + HI��f	�, f���,�� .

�A2�

The first two terms on the right-hand side of Eq. �A2� are the
Hamiltonians of the corresponding freely fluctuating inter-
faces:

H0�f��� = −
1

2
� d2R� d2R��

0

�

dz

��
0

f���R��−f���R�
dz�w��,����r� − r�� , �A3�

where

w�,���r� = 

i,j=1

2

��i − �i���� j� − � j��wij�r� . �A4�

That part of the Hamiltonian which describes the effective
interaction between the two interfaces takes the form

HI��f	�, f���,�� =� d2R� d2R��
0

�

dz

��
0

f���R��−f	��R�
dz�w	�,��„��R� − R,z�

+ z + ���… . �A5�

After introducing the lateral Fourier transforms
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f̃�q� =� d2R exp�− iq · R�f�R� ,

w̃ij�q,z� =� d2R exp�− iq · R�wij„��R,z��… , �A6�

the capillary-wave Hamiltonian in Eq. �A2� can be rewritten
as

Hcw��f	�, f���,�� =
1

2
� d2q

�2
�2 �2 f̃	��q� f̃���− q�w̃	�,���q,��

+ � f̃	��q��2�q2�	��q� − w̃	�,���0,���

+ � f̃���q��2�q2����q� − w̃	�,���0,���	 ,

�A7�

where

w̃�,���q,z� = 

i,j=1

2

��i − �i���� j� − � j��

�� d2R exp�− iq · R�wij„��R,z��… �A8�

and

���q� = q−2�w̃�,��q,z = 0� − w̃�,��q = 0,z = 0�� .

�A9�

The capillary-wave Hamiltonian for a single fluid-fluid inter-
face �Eq. �1�� separating phases 	 and � can be obtained as

a special case by setting ��� and f̃	��q�� f̃�q�, or by set-

ting ��0, f̃	��q�= f̃���q�� f̃�q� in the above formulas.
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